59 research outputs found

    Channel Hardening-Exploiting Message Passing (CHEMP) Receiver in Large-Scale MIMO Systems

    Full text link
    In this paper, we propose a MIMO receiver algorithm that exploits {\em channel hardening} that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the HHH{\bf H}^H{\bf H} matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix H{\bf H} increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes HTHx{\bf H}^T{\bf H}{\bf x}, where x{\bf x} is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the HTH{\bf H}^T{\bf H} matrix. We also propose a simple estimation scheme which directly obtains an estimate of HTH{\bf H}^T{\bf H} (instead of an estimate of H{\bf H}), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the {\em channel hardening-exploiting message passing (CHEMP)} receiver. The proposed CHEMP receiver achieves very good performance in large-scale MIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of H{\bf H}. We also present a convergence analysis of the proposed MPD algorithm. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes

    On the Capacity and Performance of Generalized Spatial Modulation

    Full text link
    Generalized spatial modulation (GSM) uses NN antenna elements but fewer radio frequency (RF) chains (RR) at the transmitter. Spatial modulation and spatial multiplexing are special cases of GSM with R=1R=1 and R=NR=N, respectively. In GSM, apart from conveying information bits through RR modulation symbols, information bits are also conveyed through the indices of the RR active transmit antennas. In this paper, we derive lower and upper bounds on the the capacity of a (N,M,RN,M,R)-GSM MIMO system, where MM is the number of receive antennas. Further, we propose a computationally efficient GSM encoding (i.e., bits-to-signal mapping) method and a message passing based low-complexity detection algorithm suited for large-scale GSM-MIMO systems.Comment: Expanded version of the IEEE Communications Letters pape

    Generalized Spatial Modulation in Large-Scale Multiuser MIMO Systems

    Full text link
    Generalized spatial modulation (GSM) uses ntn_t transmit antenna elements but fewer transmit radio frequency (RF) chains, nrfn_{rf}. Spatial modulation (SM) and spatial multiplexing are special cases of GSM with nrf=1n_{rf}=1 and nrf=ntn_{rf}=n_t, respectively. In GSM, in addition to conveying information bits through nrfn_{rf} conventional modulation symbols (for example, QAM), the indices of the nrfn_{rf} active transmit antennas also convey information bits. In this paper, we investigate {\em GSM for large-scale multiuser MIMO communications on the uplink}. Our contributions in this paper include: (ii) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and (iiii) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10310^{-3}. Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.Comment: IEEE Trans. on Wireless Communications, accepte

    Coded Index Modulation for Non-DC-Biased OFDM in Multiple LED Visible Light Communication

    Full text link
    Use of multiple light emitting diodes (LED) is an attractive way to increase spectral efficiency in visible light communications (VLC). A non-DC-biased OFDM (NDC OFDM) scheme that uses two LEDs has been proposed in the literature recently. NDC OFDM has been shown to perform better than other OFDM schemes for VLC like DC-biased OFDM (DCO OFDM) and asymmetrically clipped OFDM (ACO OFDM) in multiple LEDs settings. In this paper, we propose an efficient multiple LED OFDM scheme for VLC which uses {\em coded index modulation}. The proposed scheme uses two transmitter blocks, each having a pair of LEDs. Within each block, NDC OFDM signaling is done. The selection of which block is activated in a signaling interval is decided by information bits (i.e., index bits). In order to improve the reliability of the index bits at the receiver (which is critical because of high channel correlation in multiple LEDs settings), we propose to use coding on the index bits alone. We call the proposed scheme as CI-NDC OFDM (coded index NDC OFDM) scheme. Simulation results show that, for the same spectral efficiency, CI-NDC OFDM that uses LDPC coding on the index bits performs better than NDC OFDM

    Generalized Spatial Modulation in Indoor Wireless Visible Light Communication

    Full text link
    In this paper, we investigate the performance of generalized spatial modulation (GSM) in indoor wireless visible light communication (VLC) systems. GSM uses NtN_t light emitting diodes (LED), but activates only NaN_a of them at a given time. Spatial modulation and spatial multiplexing are special cases of GSM with Na=1N_{a}=1 and Na=NtN_{a}=N_t, respectively. We first derive an analytical upper bound on the bit error rate (BER) for maximum likelihood (ML) detection of GSM in VLC systems. Analysis and simulation results show that the derived upper bound is very tight at medium to high signal-to-noise ratios (SNR). The channel gains and channel correlations influence the GSM performance such that the best BER is achieved at an optimum LED spacing. Also, for a fixed transmission efficiency, the performance of GSM in VLC improves as the half-power semi-angle of the LEDs is decreased. We then compare the performance of GSM in VLC systems with those of other MIMO schemes such as spatial multiplexing (SMP), space shift keying (SSK), generalized space shift keying (GSSK), and spatial modulation (SM). Analysis and simulation results show that GSM in VLC outperforms the other considered MIMO schemes at moderate to high SNRs; for example, for 8 bits per channel use, GSM outperforms SMP and GSSK by about 21 dB, and SM by about 10 dB at 10410^{-4} BER
    corecore